
Transcrip)on of the audio interview with Benjamin Lion

My name is Benjamin Lion and I work at the Inria center at the University of Rennes. I study
program side effects. These are effects which are not func@onal, not in logic, but which are
consequences of the execu@on of a program on memory or on its environment. One of these
side effects is @me. A program takes @me to run.

I'm interested in methods for understanding this @me that runs, and in areas where
mastering @me is cri@cal. And one of these areas, for example, is, let's say, the Internet of
Things, where you have a controller that interacts with its environment, having instruc@ons
that execute at a precise @me. This is crucial.

Today, we can't prove it formally. We have analysis methods, but in a generic way. When a
program preserves @me proper@es during compila@on, it's difficult to have a generic method.
So there are dysfunc@ons caused by the fact that we can't understand precisely how @me
evolves during execu@on. But there's also an ambiguity for the developer when he programs
to know a priori what the behavior of his program will be, and so for the moment, there's no
way of having security over the execu@on of his program, a priori.

I've been awarded a Marie Curie post-doctoral fellowship, which will enable me to spend two
years looking into ways of cer@fying the @me taken to run the program. So, there are two
main challenges. The first is to be able to express @me in seman@cs, which would enable us
to study the seman@cs of a program by including temporal aspects and to deduce @me
proper@es of a program in rela@on to @me proper@es of sub-parts.

The second objec@ve is to preserve these proper@es through a compila@on chain, which
would make it possible to prove proper@es on a program and have these proper@es
maintained because the program is executed. I'm not going to create the compiler from
scratch, but I'm going to base myself on work that has already been developed,
consequently; at Inria, which is the cer@fica@on of a compiler for the C language. This
compiler has been formalized in a proof assistant and several proper@es have been proven,
including seman@c preserva@on. In other words, the program we run aQer compila@on has
the same behavior as the program we wrote in C.

The cer@fied compiler is called CompCert and the proof assistant is called Coq. And that's a
big area of research and also a big area of applica@on. All applica@ons that are @me-sensi@ve
would need cer@fica@on to ensure that their program runs in a precise @me. So systems like
connected industry, where programs run at precise @mes to operate on a machine, or more
cri@cal systems that have to interact with physics, need to include @me property preserva@on
cer@fica@ons in their compila@on.

