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Artificial intelligence (AI) development is rapid and heterogeneous, in terms of 
both methodology and applications. The number of areas unaffected by AI is 
most likely far outnumbered by the number of fields that are currently being 
reshaped by this new technology.

In this document, AI is considered a theoretical and practical field whose aim is 
to understand the mechanisms of cognition and reflection, and to imitate them 
using hardware and software. According to the EU AI Act (Art. 3), an artificial 
intelligence system is a machine-based system designed to operate with varying 
levels of autonomy. It can exhibit adaptiveness after deployment and, for explicit 
or implicit objectives, infers from its input on how to generate outputs such 
as predictions, content, recommendations, or decisions that influence physical 
or virtual environments. Thus, AI is primarily viewed from the perspective of 
hardware infrastructure and algorithms, which after a learning phase possibly 
requiring a very large amount of data, enable various tasks to be carried out, in 
particular:

 ▪Perceiving the environment and predicting its evolution;
 ▪Processing information, including analysis, indexing and knowledge extraction;
 ▪Making decisions, selecting actions and carrying out tasks to achieve specific 

goals.

As part of the AI Action Summit, a wide range of issues related to AI development 
will be addressed. The aim is for everyone to identify this technology’s associated 
risks, as well as its opportunities and benefits. This enables us to outline a path 
for the evolution and development of AI that aligns with the public interest and 
the diversity of views. This document focuses on the environmental impacts1 of 
AI, and more specifically on the hardware and software components on which AI 
tools are based, including the design of these tools. More specifically, the goal 
of this paper is to present five key challenges in fostering the environmental 
performance of AI. This document does not provide an exhaustive list of 
challenges, but it is designed to evolve over time to incorporate advancements 
and emerging challenges through similar consultation processes.

Building on recent developments in AI technology, several challenges have 
been put forth by a wide range of scientists, industry leaders, international 
organizations, administrative authorities and other stakeholders. We aim at 
building a coalition of stakeholders ready to address these challenges in order to 
maximize the positive impacts of AI, particularly in environmental terms, while 
minimizing the environmental footprint of deploying AI-based solutions.

To meet each challenge, the contributors sought to establish ambitious, 
collective objectives based on recent findings and developments. However, 
this effort was complicated by the lack of precise data on AI’s environmental 
footprint. To address this issue, some of the challenges outlined in this 
document aim to bridge the gap in available data.

1 According to the EU regulation establishing a framework for the setting of ecodesign requirements for 
sustainable products, environmental impact means any change to the environment, whether adverse or 
beneficial, wholly or partially resulting from a product during its life cycle.
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Although sometimes relying on algorithmic methods used for years, the 
development of AI is now proceeding at a very rapid pace, sparking numerous 
controversies that encompass both opportunities and concerns. AI’s contribution 
to environmental protection and climate change is one such controversy. 
On the one hand, AI is a powerful technology that can help us improve our 
understanding of geophysical phenomena, improve climate change forecasting, 
and support the decarbonization of various sectors such as agriculture, industry, 
mobility and energy, to name just a few examples. On the other hand, the 
development and operation of AI systems, especially at large scale, have a 
significant negative impact on the environment, including high consumption of 
water, electricity and resources, as well as low recycling rates of components.

Although digital technologies currently account for only around 3% of global 
greenhouse gas emissions2, this figure is rising sharply. At the same time, 
digital technologies already account for up to 12% of the world’s electricity 
consumption, and a major increase in their energy footprint in the coming 
years could jeopardize electricity production targets related to the ecological 
transition. At present, the rate of development of AI is far outstripping that 
of electricity production capacity from renewable energy sources such as 
photovoltaic panels or wind turbines3. In major economies such as the United 
States, China and the European Union, data centers account for only around 
2–4% of total electricity consumption today. However, due to their greater spatial 
concentration, compared to other similarly energy-intensive infrastructure, their 
local impact can be significant. For instance, the sector has already exceeded 
10% of electricity consumption in at least five US states. In Ireland, it now 
accounts for over 20% of all electricity consumption4.

The increase in the use of AI is leading to an increase in the associated 
computing requirements, which has been noticeable for more than five years, 
with model training demands increasing fifteenfold every two years. This 
trend further accelerated over the last two years, driven by the high-speed 
development of generative AI, with energy demands for training increasing by 
a factor of 750 during this period, and particularly high environmental costs 
associated with training large models (see Figures 1-a and 1-b). However, it 
is worth noting that a recent decoupling has emerged between the growth in 
FLOPs5 and the size of models or training dataset6.

2 UNCTAD Digital economy report 2024
3 Goldman Sachs AI, data centers and the coming US power demand surge 2024
4 IEA What the data center and AI boom could mean for the energy sector, 2024
5 Floating point operations (FLOPs)
6 J. Hoffmann et al. Training Compute-Optimal Large Language Models 2023
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Figure 1-a: An explosion in model size. Top: The increase7 in model size 
means it is more and more expensive to run them in terms of RAM8. 
Bottom: Resource needs are increasing faster than their availability9.

Figure 1-b: AI models are increasingly demanding in terms of computing 
capacity—you can see here the total number of operations required to 
train each AI model, as a function of time10. 

7 G. Varoquaux, A. S. Luccioni, and M. Whittaker. Hype, Sustainability, and the Price of the Bigger-is-
Better Paradigm in AI 2024
8  Random-access memory (RAM)
9  Epoch, Parameter, compute and data trends in machine learning, 2023
10  J. Sevilla and E. Roldán, Training Compute of Frontier AI Models Grows by 4-5x per Year, Epoch AI - 2024
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While the largest computing machines currently available11 support exaflops-
type computing loads (1018 operations per second), the demands of the latest AI 
models require cumulative power to the order of 1025 operations.

Even if the figures presented in this document explicitly focus on model 
development, assessing the performance of AI systems -particularly in terms of 
the environmental impact- often remains very difficult. Indeed, the necessary 
information such as the size of the system, the learning corpus, the frequency of 
updates or the volume of inference is not always publicly available and has to be 
estimated using proxy variables.

The considerable increase in model size can be attributed to three factors:

 ▶ �The drive to develop generalist AI models.

 ▶ �The significant improvement in Large language model (LLM) performance 
beyond a certain critical size, as shown in Figure 2.

 ▶ �The common approach of improving LLM performance by increasing the 
volume of data used for training.

The consequences of this race to gigantism go beyond the environmental impact. 
The cost of developing and maintaining large AI systems is increasing so rapidly 
that owners are encouraged to favor applications that generate substantial 
revenue at the expense of those supporting the common good.

 

Figure 2: Jumps in capabilities on eight reasoning benchmarks for five 
different generative language models as a function of the number of 
floating-point operations (FLOPs) invested for optimizing model parameters 
during training. The jumps have been referred to as the emergence of 
specific capabilities at particular thresholds of model size12.

11 See https://top500.org/
12  J. Wei et al, Emergent Abilities of Large Language Models, 2022.

5

https://top500.org/
https://doi.org/10.48550/arXiv.2206.07682


However, for many tasks, the performance of AI systems tends to decrease as 
the size of the system (particularly the memory footprint) increases, as shown in 
Figure 3 and the reference13. 
 
These trends support the development of AI systems that focus on the quality of 
data used for learning rather than the quantity and leverage a priori information 
- such as symmetry, invariance and expert knowledge - to improve performance 
while reducing the cost of the learning phase.

 SLMs (Small Language Models) with just a few billion parameters have recently 
been proposed, offering high performance while remaining resource-efficient and 
suggesting a certain decoupling between performance and size.

Figure 3: Plots of performance as a function of scale (time or memory 
footprint) on benchmark data from a) tabular learning, b) a medical image 
segmentation challenge, c) computer-vision object detection, d) scenes 
parsing, e) text embedding and f) text understanding.

13  E. Horvitz and T. M. Mitchell, Scientific Progress in Artificial Intelligence: History, Status, and Futures 
2024 In Realizing the Promise and Minimizing the Perils of AI for Science and the Scientific Community. 
University of Pennsylvania Press
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Information and communication technologies (ICT) have always operated at the 
nexus between centralized systems (servers, data centers) and decentralized 
systems (terminals, interfaces). We are now seeing the emergence of AI systems 
running on mobile phones or even connected devices. This trend is set to 
intensify, with a number of consequences:

 ▶ Less traffic on networks and less computing in data centers;

 ▶ An increased use of terminals possibly less optimized than data centers;

 ▶ �A possible acceleration in the obsolescence of devices that do not support 
these new systems, leading to a possible early replacement of digital 
equipment in the years to come. 

While drawing up a clear path of future developments in AI remains difficult, we 
can still draw some conclusions:

 ▶ �The potential of AI is extensive and real, and it would be unrealistic to try to 
do without this technology entirely;

 ▶ �We need to find a development path for AI that reconciles the preservation of 
our planet with innovation;

 ▶ �The development of AI raises many questions, many of which go beyond 
the environmental impact. It is therefore essential to be able to evaluate 
AI systems, so that these new technologies can factually demonstrate their 
potential to serve the general interest.

The challenges proposed below have two objectives. The aim is, of course, to 
limit the environmental footprint of AI. At the same time, the development of 
sustainable AI tools should enable scientific advances and innovations. These 
advances, which go well beyond the optimization of existing systems, can 
profoundly transform current practices and facilitate the ecological transition.
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Proposals
Challenge 1

Environmentally performant 
technologies

The environmental impacts of an AI system are wide-ranging, 
from manufacture, lifespan, use, recycling, to and-use changes, 
and must be explored from a holistic perspective, that takes 
into account system hardware, data and algorithms14. Energy 
consumption15 -which is calculated throughout the lifecycle and 
weighted by use- serves as a good proxy for these impacts but 
other types of impacts, such as water consumption, have to be 
considered.

A large number of research projects are currently underway and many 
technologies will emerge to improve the performance, particularly the energy 
efficiency, of AI architecture, such as:

 →Highly energy-efficient digital accelerators;

 →Specialized microarchitectures, specialized chiplets, 3D integration;

 →�Integration of in-memory computing enabled analogic and photonic 
accelerators;

 →Vector processing, tensor calculus16, hyper dimensional computing, 
quantum computing in AI workflow;

 →Edge or embedded AI, remote AI systems on terminals;

 →Lower inference costs thanks to smaller, easier-to-run models;

 →�New cooling techniques (liquid, immersive) and reuse of the extracted 
energy.

These hardware improvements require algorithms tailored to this new 
architecture:

 →�Quantization, multiple, reduced and adapted precision, as well as strategies 
for network topology optimization;

 →New algorithms for optimization and back propagation;

 →�Algorithms and models for agent-based AI, federated learning, and 
distributed learning that will contribute to the development of more 
flexible, privacy-preserving, and scalable AI systems.

14  C. Wu et al., Sustainable AI: Environmental implications, challenges and opportunities 2022.
15 IEA Electricity 2024, Paris. This report and the section devoted to artificial intelligence shed light on 
how to build a more optimised energy system and show the relative weight of AI compared with other 
electricity-consuming sectors.
16  N. P. Jouppi et al. In-Datacenter Performance Analysis of a Tensor Processing Unit, 2017.
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It should also be noted that responsible data management practices can play a 
key role in reducing unnecessary data storage, including data wastage, redundant, 
unused or inefficiently managed data.

Developing efficient technologies requires addressing key challenges, such as 
creating co-integrated software platforms and application software stacks 
designed for neural network development (learning and inference) in resource-
constrained and context-dependent environments. We can also think of new 
approaches based, for example, on nature-inspired technologies17 such as:

 →Neuromorphic architectures for sparse and low-precision computation;

 →Spiking-based neural networks for low-power event-based processing;

 →�Oscillator-based neural networks for solving combinatorial optimization 
problems and pattern retrieval; 

 →Associative memories for pattern search and distance estimation; 

 →�Other bio-inspired approaches using memristive devices18, photonic neural 
networks for ultra-fast computations and DNA-based computing for 
massive parallelism.

Challenge 2 

Towards specialized, nimble models, 
trained on trusted datasets

When a new technology emerges, there is a natural tendency to 
develop generalist tools using that technology. However, dedicated 
tools often emerge soon after. 

This can be seen in the development of generative AI, with the emergence initially 
of large models that provide general-purpose functions. We need to reinforce the 
development of more task-specific and therefore smaller AI tools, as these tools, 
in contrast to large models, are more likely to reconcile environmental protection 
with innovation.

As Figure 3 shows, growth in the volume of data used for AI training does not 
necessarily improve the performance of an AI system. In fact, performance 
can decrease when the data used is redundant. The goal is thus to define a 
framework that is conducive to the development of small, sufficient and resilient 
solutions. Sophisticated AI solutions designed to solve specific problems may 
sometimes be preferable to fine-tuning general-purpose models.

17  D. S. Modha et al., Neural inference at the frontier of energy, space, and time - Science 382, pp. 329–335, 
2023. 
18  Memristive devices are electrical switches that retain a resistance state based on past voltage and 
current history, enabling them to store and process information. A key type, based on ionic motion, 
consists of a conductor/insulator/conductor thin-film stack. First proposed in the 1960s, recent 
advancements have led to fast, low-energy, high-endurance devices that can be scaled below 10 nm and 
stacked in 3D. However, the mechanisms behind these devices remain unclear, hindering their broader 
application [Yang, J., Strukov, D. & Stewart, D. Memristive devices for computing. Nature Nanotech 8, 13–24 
(2013)].
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The key issues we face in meeting this challenge are:
 →Encouraging the availability and increasing the visibility of precise datasets, 

domain-specific data to certain fields or for certain applications. These 
datasets, which should comply with current legislation, can be used by a 
wide range of players, particularly emerging players, for training, as well as 
for evaluating the systems developed.

 →Encouraging the development of digital commons, such as open-source 
tools, that will bring together not only datasets, but also software building 
blocks and architectures.

Challenge 3

New methods and better data to assess 
the environmental footprint of AI

One way of responding to the concerns raised by AI is to be 
transparent about its impact, particularly on the environment. 
The environmental impact of AI is an integral part of its 
assessment. Limiting these impacts requires a detailed 
understanding, with their assessment going beyond life cycle 
analysis and eco-design requirements19. 

The direct environmental impacts of AI, including the manufacture of equipment, 
fresh water use, abiotic materials, rare earth elements and energy consumption, 
or greenhouse gas emissions, are starting to be investigated. With this knowledge, 
scientists will be able to develop methodologies and key performance indicators 
for assessing the environmental footprint of an AI system, provided that they have 
the information and physical quantities characterizing its operation.

Open-sourcing models can encourage the sharing of resources and avoid 
the repetition of model training for similar uses, thus ensuring more efficient 
consumption of energy and resources.

The key issues we face in meeting this challenge are:
 →Defining significant parameters20 which can then be used to construct 

metrics and indicators to quantify the environmental impact of AI. It is 
essential to take into account the end-to-end impacts -from client terminals 
that use networks to cloud servers-, during all stages of the AI process 
(learning, inference) and with a complete vision of the life cycle of hardware 
and software resources21.

 →Encouraging more data sharing from companies, as most data on the 
environmental impacts of AI systems currently comes from AI providers, 
such as large-scale data center operators, or their customers. This can 
be achieved through different methods, such as voluntary disclosure or 

19 T. Duke, P. Giudici, P., Responsible AI in Practice: A Practical Guide to Safe and Human AI, Apress L.P., 2025
20  We can think of data such as: the size of the system, the learning process, the volume of inference, the 
update frequency, the energy performance of the processors and their lifespan.
21  A. Berthelot, E. Caron, M. Jay, L. Lefevre, Estimating the environmental impact of Generative-AI services 
using an LCA-based methodology. CIRP LCE 2024-31st Conference on Life Cycle Engineering, Jun 2024.  
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data declaration (e.g., the European Data Centre Declaration Scheme22). 
Standardization is also necessary to ensure that data reports are easily 
comparable and actionable.

 →Offering software-based energy consumption measurements with levels 
of abstraction capable of adapting to the heterogeneity of technologies and 
architectures used by manufacturers. This includes defining approaches 
to understanding the most optimal hardware and software combination in 
terms of environmental performance.

 →Quantifying the likely or possible positive impacts of AI in specific 
sectors. This could be incredibly useful for inspiring sustainability-minded 
individuals and organizations to explore new applications of this technology 
for the public good. Estimating the effects of AI systems on alleviating the 
environmental footprint of other economic sectors is a major undertaking. 
To succeed in doing so, we first need to limit ourselves to specific use cases 
and applications or to a few well-defined sectors, for instance agriculture, 
transport, telecommunications or housing.

Challenge 4

Scaling Circular Economy Principles 
for hardware used to power AI

Over the past few decades, there has been progress in 
implementing circular economy principles and improving 
recycling within the digital industry.23. Regarding the legislation, 
one noteworthy example is the adoption of the Eco-design for 
Sustainable Products Regulation (ESPR) at the European Union level.

This regulation establishes a general regulatory framework to adopt new and 
more ambitious eco-design standards for energy-related products, Information 
and communication technologies (ICT), and other electronic goods. 

However, this does not imply that all technical and societal challenges have been 
resolved when it comes to generalizing circular economy approaches across AI 
supply chains. This section of the paper suggests that, that while we are not 
starting from scratch, this challenge remains to be solved.

The main hurdle is that AI deployment is likely to lead to an increase in the flow 
of electronic waste, which could reach a total accumulation of 1.2 to 5 million 
tons over the period 2020–2030, depending on the different scenarios for the 
development of generative AI24. One of the explanations is that hardware and 
software need to be adapted to accommodate new AI technologies. Identifying 
and implementing circular economy strategies early—as it is already the case for 
some classic electronic and electric technologies and devices—and throughout 

22  Commission adopts EU-wide scheme for rating sustainability of data centers
23  Chersan, Ionela-Corina & Paunescu, Mirela & Nichita, Mirela & Dumitru, Valentin & Manea, Lidia. (2023). 
Circular Economy Practices in the Electrical and Electronic Equipment Sector in the European Union. 
Amfiteatru Economic. 25. 80-100. 10.24818/EA/2023/62/80.
24  P. Wang et al. The challenges of generative artificial intelligence in electronic waste, Nature 
Computational Science, 2024
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the AI value chain is thus essential and could reduce e-waste generation by 16 to 
86%.

In addition, strategies that increase the modularity and reparability of 
equipment—whether terminals or connected equipment— by allowing the 
replacement of individual components rather than of entire units will boost the 
circular economy dynamic. They will also simplify the integration or addition of 
embedded AI solutions (Edge AI, Tiny Edge) into industrial equipment, enabling it 
to harness AI advantages, such as improving predictive maintenance, for example. 
This, in turn, could increase the life span of hardware components that are used 
to power AI technology. 

While AI can help extend the lifespan of hardware, it is essential to consider 
the environmental impact of the hardware itself. Some research has already 
been conducted on this topic, and certain industries have worked on strategies 
to reduce the environmental footprint of mainstream digital technologies—not 
just those specific to AI. Although these issues are not unique to AI, they are 
becoming increasingly important with the rise of AI, particularly generative AI. 

The growth of AI systems may also increase the demand for certain metals. 
Strengthening equipment collection and recycling strategies can reduce the 
environmental impact of the hardware used by the AI systems, providing a 
secondary source of critical metals and helping ensure a more reliable and 
sustainable supply of these essential minerals25. The main challenge of recycling 
lies in the complexity of recovering the rare metals present in electronic 
components. Therefore, in addition to creating a market for recovered spare 
parts, we must support research and development efforts to establish an 
industry focused on the treatment and recovery of components that cannot be 
directly reused in new equipment.

The key issues we face in meeting this challenge are:
 →Identifying and implementing the strategies and levers that will strengthen 

efforts to maintain the momentum of extending the lifespan of equipment 
(servers and terminals) and reduce premature obsolescence26, notably 
through software optimization, hardware eco-design -to improve modularity, 
upgradability, and end-of-life dismantling-, or the reuse of previous-
generation equipment for less energy-intensive applications such as running 
small and medium-sized models, specialized projects, etc.;

 →Identifying strategies to prevent the components (such as boards, chips, 
etc.) from becoming waste, particularly by improving the dismantling 
equipment used to recover components that can be repurposed for new uses 
when they are no longer compatible with AI system operations;

 →Strengthening metal recovery activities so that when components can no 
longer be reused and become e-waste, we can increase the circularity of 
the raw materials thereby reducing our reliance on critical metals sourced 
from mining. We must also collectively continue to address structural and 
technical hurdles, including ensuring that recycled metal maintain the same 
performance characteristics as their original counterparts.

25 https://www.iea.org/reports/recycling-of-critical-minerals
26  According to the EU regulation establishing a framework for the setting of ecodesign requirements for 
sustainable products, ‘premature obsolescence’ means a product design feature or subsequent action or 
omission resulting in the product becoming non-functional or performing less well without such changes 
of functionality or performance being the result of normal wear and tear. Ecodesign requirements should 
also address practices associated with premature obsolescence. Such practices have an overall negative 
impact on the environment, in the form of increased waste and use of energy and materials, which can be 
reduced through ecodesign requirements while contributing to sustainable consumption.
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Challenge 5

Changing the Image of AI to 
Promote the Development of Frugal 
AI Tools and Their Rational Use

Many scientists are working on developing AI systems that are 
frugal, economical and even low-tech. It is vital to stimulate this 
work, reward it and make it visible. To achieve this, we need to 
change the way we measure and value performance.

The development of very large-scale AI systems is partly due to the criteria used 
to evaluate the performance of algorithms and technologies in the scientific 
community. Such performance criteria currently give priority to quantitative 
performance, for instance through general benchmarks, to the detriment of 
“specialized” benchmarks or benchmarks “centered” on a few problems that 
would enable the advantages of “specific” AI to be highlighted.

For users to act responsibly, frugal AI models must exist and be actively 
advertised. Through public-private partnerships or labels, for example, AI 
providers should be encouraged to develop such targeted, task-specific AI 
models and advertise them to B2B customers and the public.

The key issues we face in meeting this challenge are:
 →Giving visibility to scientific work on frugal and sustainable AI on an 

international scale, in particular through the development of new journals or 
conferences that make it easier for researchers and practitioners working on 
AI and the environment to publish and present their work;

 →Developing training in AI, both initial and continuous. Educational content 
must incorporate green skills and tools and solutions designed for a 
constrained world. The speed at which new AI concepts are emerging 
underscores the importance of lifelong learning;

 → Developing educational content (e.g. under the lead of UNESCO or the 
OECD) such as MOOCs, to help people understand how AI works, highlighting 
its strengths and weaknesses, and encouraging the sensible use of AI tools. 
Concrete numbers and examples help the general audience to understand 
the environmental and other impacts of AI.
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Appendix
There are profound links between AI and the environment. Broadly speaking, they 
can be divided into three categories:

 ▶ �AI that models the environment, the climate, as well as natural and 
environmental hazards;

 ▶ �AI as a tool to decarbonize certain industries (agriculture, mobility, industry, 
housing and construction);

 ▶ �The environmental footprint of AI, and more specifically the impact of the 
hardware and software components on which AI tools are based. 

�This document focuses on the last point. In the following, we will briefly outline 
the contributions of AI to the first two points.

Environmental Modeling—Understanding, Simulating and 
Predicting
The digital simulation of mechanistic models made it possible to understand and 
anticipate geophysical phenomena (meteorology, oceanography, climate, natural 
and environmental hazards, etc.). Nevertheless, the size of the models, their 
parameterization, and their cost (computing time and associated environmental 
cost) are becoming obstacles to scientific advances. At the same time, there is an 
abundance of data (sensors, satellite data, surveys carried out over many years) 
enabling the use of data science and AI in particular. These new technologies 
enable major advances27, sometimes with hybridization between traditional 
models and AI techniques.

Climate services (the provision and use of climate data, information and 
knowledge to support decision-making play a key role in many sectors of our 
economy.

AI’s Contribution to Decarbonization and the Ecological Transition 
- Mitigation
Digital technology and AI are transforming a wide range of sectors and often 
provide a lever to help reduce the environmental footprint of these sectors. There 
are particularly notable advances in the following sectors: agro-ecology (mixed 
crops, decision-making tools for farmers, genetic diversity, flexible robotics, etc.), 
mobility (multimodality, planning tools, etc.), industry (eco-design, optimization 
of data centers, digital twins), energy (smart grids, renewable energies). This list is 
not exhaustive, and at this stage, few quantitative results are available.

It should be emphasized that the use of AI in this field is not just about 
optimizing existing processes. AI can have a transformative effect, proposing a 
wholly different trajectory (radical innovations or creative breakthroughs).

27  V. Eyring, W.D. Collins, P. Gentine et al. Pushing the frontiers in climate modeling and analysis with 
machine learning. Nat. Clim. Chang. 14, 916–928 2024. GenCast.
G. Couairon, C. Lessig, A. Charantonis and C. Monteleoni, ArchesWeather: An efficient AI weather forecasting 
model at 1.5 deg resolution 2024. 
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