Equipe-projet

SISTM

Statistics In System biology and Translational Medicine
Statistics In System biology and Translational Medicine

Objectifs

Le défi est d’analyser ces BIG DATA pour répondre à des questions cliniques et biologiques à l’aide de méthodes statistiques appropriées. Pour comprendre les données d’une cellule à l’état clinique des individus dans toutes les circonstances, y compris dans les essais cliniques, de nouveaux outils sont nécessaires pour traduire les informations obtenues à partir des systèmes complexes. Par extension, cela a conduit au domaine de la « médecine des systèmes » « biologie des systèmes », qui a lieu naturellement dans le cadre de la médecine translationnelle reliant la recherche clinique et biologique.

L’analyse statistique de ces données est confronté à plusieurs problèmes :

  • Il y a plus de paramètres (p) à estimer que d’individus (n)
  • Les types / nature des données sont différentes
  • La relation entre les variables est souvent complexe (par exemple non linéaire) et peut changer au fil du temps. Pour faire face à ces problèmes, nous développons des approches spécifiques souvent liées à l’immunologie.

Les méthodes sont principalement basées sur la modélisation mécanistique utilisant des systèmes d’équations différentielles ou sur les méthodes d’apprentissage statistique. Le paradigme de notre approche est d’inclure autant d’informations que disponible pour répondre à une question donnée. Ces informations proviennent des données disponibles, mais aussi de l’information biologique initiale définissant la structure du modèle ou de restreindre l’espace des valeurs de paramètres. Nous développons et appliquons nos méthodes principalement pour des applications appartenant à la recherche clinique en particulier l’immunologie du VIH. Par exemple, plusieurs projets sont consacrés à la modélisation de la réponse aux traitements antirétroviraux, les interventions immunitaires ou vaccin chez les patients infectés par le VIH.

Les applications sont réalisées en collaboration avec the Vaccine Research Institute (VRI), d’autres équipes du centre ainsi que l’Unité de Soutien Méthodologique à la Recherche Clinique et Epidémiologique (USMR) du CHU de Bordeaux.

Centre(s) inria
Centre Inria de l'université de Bordeaux
En partenariat avec
Université de Bordeaux,INSERM

Contacts

Responsable de l'équipe

Ellie Correa Da Costa De Castro Pinto

Assistant(e) de l'équipe